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ajor discoverieshavebeenobtainedwithin the last decade in thefieldof hereditarypredisposition topulmonaryarterial
hypertension (PAH). Among them, the identification of bone morphogenetic protein receptor type 2 (BMPR2) as the
major predisposing gene and activin A receptor type II-like kinase-1 (ACVRL1, also known as ALK1) as the major gene
when PAH is associated with hereditary hemorrhagic telangiectasia. Themutation detection rate for the knowngenes is
approximately 75% in familial PAH, but the mutation shortfall remains unexplained even after careful molecular
investigation of these genes. To identify additional genetic variants predisposing to PAH, investigators harnessed the
power of next-generation sequencing to successfully identify additional genes that will be described in this report.
Furthermore, common genetic predisposing factors for PAH can be identified by genome-wide association studies and
are detailed in this paper. The careful study of families and routine genetic diagnosis facilitated natural history studies
based on large registries of PAH patients to be set up in different countries. These longitudinal or cross-sectional studies
permitted the clinical characterization of PAH in mutation carriers to be accurately described. The availability of
molecular genetic diagnosis has openedupanewfield for patient care, includinggenetic counseling for a severedisease,
taking into account that the major predisposing gene has a highly variable penetrance between families. Molecular
information can be drawn from the genomic study of affected tissues in PAH, in particular, pulmonary vascular tissues
and cells, to gain insight into the mechanisms leading to the development of the disease. High-throughput genomic
techniques, on thebasisof next-generationsequencing, nowallow theaccuratequantificationandanalysisof ribonucleic
acid, species, including micro-ribonucleic acids, and allow for a genome-wide investigation of epigenetic or regulatory
mechanisms, which include deoxyribonucleic acid methylation, histone methylation, and acetylation, or transcription
factor binding. (J Am Coll Cardiol 2013;62:D13–21) ª 2013 by the American College of Cardiology Foundation
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Hereditary predisposition to pulmonary arterial hyper-
tension: from major genes to associated single nucleotide
polymorphisms. Over 300 independent BMPR2 mutations
(coding for a type II receptormember of the transforming growth
factor [TGF]-b family) have been identified that account for
approximately 75% of patients with a known family history of
pulmonary arterial hypertension (PAH), and up to 25% of
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apparently sporadic cases have now unequivocally established
defects in this gene as the major genetic determinant underlying
PAH (1). Pathogenic mutations in the type I receptorACVRL1
and, at a significantly lower frequency, the type III receptor
endoglin in multiple kindreds cause PAH associated with
hereditary hemorrhagic telangiectasia (HHT) (2). Together,
these observations support a prominent role for TGF-b family
members in the developmentof PAH.Consequently, a series of
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studies have adopted a candidate
gene approach to delineate novel
genetic variants by examining
TGF-b receptors and effectors
in patient cohorts without muta-
tions in the known PAH genes.
With conventional analytical
techniques, Shintani et al. (3)
identified a truncating mutation
in the bonemorphogenetic protein
(BMP)-responsive gene SMAD9
(p.C202X) in a panel of 23 Japa-
nese cases. A second truncating
mutation (p.R294X) has since
been identified in another pa-
tient of Asian descent (4). A
similar screen of the BMP-specific
SMADs and SMAD4 described
a series of 4 variants in 198 idio-
pathic pulmonary arterial hyper-
tension (IPAH) patients. These
variants in SMAD1 (p.V3A),
SMAD4 (p.N13S; c.1448-6T>C),
and SMAD9 (p.K43E) were des-
cribed as being of unknown sig-
nificance due to their moderate
effects on canonical downstream
BMP-mediated signaling out-
comes (5). The SMAD9 variants
are more compelling, because
these data are supported by the
development of clinical and his-
topathological features of pulmonary hypertension in a Smad9
knock-out mouse model (6). More recently, 2 missense
mutations of the type I receptor BMPR1B (p.S160N and
p.F392L) were reported in a cohort of 43 IPAH patients.
Subsequent functional and reporter assays suggested that these
variants generated an induction of SMAD9 and augmentation
of transcriptional activity indicative of a gain-of-function
mechanism. Because the preceding studies, in conjunction
with the Smad9 mutant mouse model, suggest a molecular
mechanismof haploinsufficiency for this gene, the observations
described by Chida et al. (7) would seem to be contradictory
ctelion, GlaxoSmithKline, Eli Lilly, Novartis,

fizer; and has received consultancy and lecture

euticals, Actelion, GlaxoSmithKline, Eli Lilly,

r, and Alexion. Dr. Geraci has served on the

tendants Medical Research Institute. Dr. Elliott

care, which has received research grants from

ional Institutes of Health, and United Thera-

cipal Investigator; and he has received honoraria

CoTherix, and Boehringer Ingelheim. Dr.

dvisory board of and as an investigator for trials

xoSmithKline, Novartis, and Pfizer. All other

no relationships relevant to the contents of this

013; accepted October 22, 2013.

jacc.org/ on 01/24/2014
and require further investigation on the functional level. Austin
et al. (8) used whole exome sequencing to study a 3-generation
familywithmultiple affected familymemberswithPAHbut no
identifiablemutation in the knownheritable pulmonary arterial
hypertension (HPAH) genes and identified a novel gene for
HPAH: Caveolin-1 (CAV1). They also identified a de novo
frameshift mutation in a child with IPAH. CAV1 encodes
a membrane protein of caveolae abundant in the endothelium
and other cells of the lung. Caveolae are rich in cell surface
receptors critical to initiation of a cellular signaling cascade such
as the TGFb superfamily, nitric oxide pathway, andG-protein
coupled receptors. Aberrant signaling at the plasmamembrane
might be the mechanism for PAH pathogenesis. Their study
demonstrates that mutations in CAV1 are associated in rare
cases with familial PAH and IPAH, and it could provide new
insight into the pathogenesis of PAH.

Exome sequencing in another family with multiple
affected family members without identifiable HPAH muta-
tions was found to have a heterozygous novel missense
variant in the potassium channel KCNK3 (9). Analysis for
additional familial PAH cases and IPAH cases identified
5 additional heterozygous novel missense variants. All 6
variants are located in highly conserved amino acids and are
predicted to be damaging by in silico analysis. With transient
transfection in COS-7 cells, whole patch clamp procedures
demonstrated that each of the 6 mutations resulted in loss of
function. Some, but not all, mutations were rescued by the
phospholipase inhibitor, ONO RS-082. KCNK3 encodes
a pH-sensitive potassium channel in the 2-pore domain
superfamily (10). It has been reported that this potassium
channel is sensitive to hypoxia and plays a role in the regu-
lation of resting membrane potential and pulmonary vascular
tone (11–13). Identification of this gene as a cause of HPAH
and IPAH and the possibility of rescuing specific mutations
might provide a new target for PAH treatment.

Childhood-onset PAH shows some clinical and genetic
differences from adult-onset PAH. The frequency of
BMPR2mutations found in sporadic cases is far lower than in
adult-onset PAH (14–16). Pulmonary hypertension is an
uncommon complication in many genetic disorders, although
in certain syndromes such as Down syndrome, PAH is more
common (17). The increased risk for PAH with Down
syndrome is due to left-to-right cardiac shunts; in addition,
upper airway obstruction associated with obstructive sleep
apnea might promote non-PAH pulmonary hypertension
(18). Genetic syndromes more commonly but not necessarily
associated with congenital heart disease (CHD) and
pulmonary hypertension include DiGeorge syndrome,
VACTERL syndrome, CHARGE syndrome, Scimitar
syndrome (19), Noonan syndrome (20), and chromosomal
anomalies associated with congenital diaphragmatic hernia.
Genetic syndromes associated with pulmonary hypertension
usually not associated with CHD include Adams-Oliver
syndrome (21,22), neurofibromatosis type 1 (23,24), long
QT syndrome, hypertrophic cardiomyopathy, Cantu
syndrome (25), autoimmune polyendocrine syndrome (26),
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mitochondrial disorders including mitochondrial encepha-
lopathy lactic acidosis and stroke-like episodes (27), Gaucher
disease (28), and glycogen storage diseases (GSDI and
GSDIII) (29). The mechanism for development of pulmo-
nary hypertension has not been definitely demonstrated for
most genetic syndromes but could involve increased pulmo-
nary blood flow with left-to-right shunts with CHD, upper
airway obstruction, dysfunctional vascular smooth muscle
cells with hyperproliferation leading to pulmonary vessel
stenosis and remodeling (Adams Oliver syndrome [21,22]
and neurofibromatosis type 1) (24,30), pulmonary venous
obstruction (Cantu syndrome) (25), or production of
diffusible hepatic factors increasing the pulmonary pressures
(Gaucher disease and GSD) (29). Notably, pulmonary
hypertension in patients with Gaucher disease has been re-
ported to respond well to treatment of the primary metabolic
disorders with enzyme replacement therapy (28).

Nimmakayalu et al. (31) reported a microdeletion
encompassing TBX2 and TBX4 in a case of syndromic
pulmonary hypertension associated with microcephaly
thyroid and sensorineural abnormalities. Recently, Kerstjens-
Frederikse et al. (32) studied 3 children with idiopathic or
familial PAH associated with mental retardation and dys-
morphic features by comparative genomic hybridization to
identify deletions encompassing the same locus. They found
3 overlapping deletions at 17q23.2 involving also the TBX2
and TBX4 genes. These genes were subsequently sequenced
in the 20 children, and 3 additional mutations were found in
the TBX4 gene, which is responsible for the small patella
syndrome. All patients with the TBX4 mutations present
with signs of small patella syndrome. Inversely, careful
investigation of patients known to have small patella
syndrome did not reveal pulmonary hypertension.

Another approach for identifying genes predisposing for
PAH is to perform association studies using polymorphic
markers (single nucleotide polymorphisms [SNPs]) distrib-
uted throughout the whole genome. This approach requires
a large number of patients and control subjects to compare
the genotype frequencies in the 2 groups and look for
a significant difference that can indicate association between
the disease and the marker. With such an approach, Ger-
main et al. (33) identified an SNP associated with IPAH
and the familial form of PAH not caused by BMPR2
mutations. The risk allele of the SNP is associated with an
odds ratio for PAH of 1.97 (95% confidence interval: 1.59 to
2.45; p ¼ 7.47 � 10�10) and is close to the Cerebellin 2
(CBLN2) gene on Chr 18q22.3.

The molecular basis of the variation in penetrance
observed for BMPR2 mutations has been addressed by
several studies. The question is made difficult by the limited
number of patients who can be included in this type of
study, which requires large series of patients to reach
statistical significance. Different approaches have been used.
Philips et al. (34) studied a functional polymorphism of the
TGF-b1 gene to investigate a possible disequilibrium
between the BMPs and TGF signaling pathways that might
ded From: http://content.onlinejacc.org/ on 01/24/2014
influence the penetrance of the BMPR2 mutations. They
proposed that the TGF-b1 polymorphism modulates the
age at diagnosis and penetrance of the BMPR2 mutations.
West et al. (35) used another approach by studying gene
expression in immortalized B-lymphocyte cell lines of
BMPR2 mutation carriers, either affected or unaffected. The
most striking expression difference was observed for the
CYP1B1 gene, with nearly 10-fold lower expression, but
only in female patients (36). CYP1B1 is in the synthetic
pathway of 2-OH estradiol metabolites that have anti-
proliferative effects on pulmonary vascular smooth muscle
cells and attenuate pulmonary hypertension in animal
models (37,38). In contrast, when CYP1B1 is inhibited,
16b-OH-estradiol and -estrone are synthesized, which have
proinflammatory, proangiogenic, and promitogenic effects
(reviewed in Paulin and Michelakis [39]). However, mice
with a disrupted Cyp1b1 gene do not exhibit differences in
the development of experimental pulmonary hypertension,
indicating an environmental context for the gene-effect (40).
These results show the complexity of hormonal influences
that might explain female predominance of PAH, which is
observed in HPAH as well as in IPAH (41). With the same
type of approach in cultured cells from patients carrying
BMPR2 mutations leading to destruction of the mutated
messenger ribonucleic acid (mRNA) by nonsense mediated
ribonucleic acid (RNA) decay, Flynn et al. (42) have
proposed a PAH penetrance signature on the basis of
expression profiling of mRNAs in lymphocytes, and this
profile suggests that reactive oxygen species formation would
play an important role in the development of the disease.
Concurrent inflammation can modify pathologic effects of
the mutated BMPR2 gene (43,44).
Clinical presentation of HPAH. In approximately 75% of
patients with a family history of PAH, a mutation in known
PAH-causing genes has been identified (1,15,45,46) corre-
sponding mostly with BMPR2 mutations. In patients
without known family history (sporadic or idiopathic cases),
approximately 20% harbor a germ-line mutation. In patients
with a personal or familial history of HHT, ACVRL1
mutations were the major cause identified. Similar propor-
tions of mutation carriers were observed in anorexigen-
induced PAH. By contrast, BMPR2 mutations are not
found in associated PAH (scleroderma and connective tissue
diseases, portal hypertension, human immunodeficiency
virus infection), with the exception of some reports in
CHDs. Of note, familial cases of pulmonary veno-occlusive
diseases are rarely associated with a BMPR2 mutation
(47–49).

Retrospective analysis from registries (1,15,45,46) and 1
prospective study (50) revealed that HPAH patients carrying
a BMPR2 mutation, irrespective of the family history,
develop PAH at a younger age than mutation-negative
IPAH patients. Furthermore, HPAH patients have a more
severe clinical and hemodynamic phenotype at diagnosis
(less response to acute vasodilator challenge, lower cardiac
index, and higher pulmonary vascular resistance), and they
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are more likely to progress to death or lung transplantation
(at a younger age than noncarriers) (46,50–53). However,
the number of analyzed gene-carriers is so far relatively low.
Further studies are needed to evaluate whether genetic
testing might be helpful for risk stratification and clinical
management. Similar findings are observed with ACVRL1
mutations with a significant number of pediatric cases and
a dismal prognosis (50). Of note, ACVRL1 mutation carriers
might develop both PAH and HHT. Because HHT has
nearly complete penetrance at the age of 60 years, some
ACVRL1 mutation carriers might not have clinical evidence
of HHT at very young ages. Collecting information of
personal and familial history of HHT, including “forme
fruste,” seems important, especially in pediatric cases.

A more extensive evaluation of the Vanderbilt Pulmonary
Hypertension Registry casts doubt on the likelihood of
genetic anticipation in BMPR2-related familial PAH (54).
Analysis of families with sibships that have lived at least 57
years from first family diagnosis allows >85% of mutation
carriers to express disease. In these families, the apparent
effect of lower age of onset in earlier generations disappears,
because the time it takes for penetrance to occur in this
illness can be up to 75 years of age in an apparently unaf-
fected carrier. Thus, genetic anticipation is no longer sup-
ported by current data.

The penetrance of disease in the Vanderbilt Pulmonary
Hypertension Registry has been re-evaluated (54): of a total
number of 1,683 siblings, assuming a 50% carriage rate of
the mutation, there were 232 affected individuals of 842
carriers (one-half of 1,683 siblings), or a 27% overall pene-
trance. There were 177 female subjects and 59 male subjects.
The female/male ratio of PAH was 3:1, which was similar to
previous estimates. The female penetrance was approxi-
mately 42%, and the male penetrance was approximately
14%. These sex differences should have an impact on disease
and genetic counseling in families.
Genetic counseling and testing. Two consensus guide-
lines recommend that physicians offer professional genetic
counseling and genetic testing to patients with a history that
suggests HPAH (55,56). In addition, the authors of these
guidelines have recommended that patients with IPAH be
advised about the availability of genetic testing and coun-
seling, because of the strong possibility that they carry
a disease-causing mutation. The guidelines recommend that
professionals offer counseling and testing to the affected
IPAH patient before approaching other family members.
The identification of a disease-causing mutation in an
affected family member allows less expensive testing of other
family members, if they want such testing.

Affected individuals and “at risk” family members might
want to know their mutation status for family planning
purposes. Pre-natal screening or pre-implantation diagnosis
and management are possible. Reproductive medicine allows
several options for preventing transmission of HPAH to the
next generation. Indeed, current reproductive options for
couples with a BMPR2 mutation carrier are to remain
ded From: http://content.onlinejacc.org/ on 01/24/2014
childless, to have no genetic pre-natal testing (reproductive
chance), to undergo pre-natal or pre-implantation genetic
diagnosis, to use gamete donation, or to adopt. Pre-natal
diagnosis allows the detection of an in utero fetus carrying
a mutation predisposing to PAH. Pre-natal diagnosis
requires that the familial mutation has been identified
molecularly. If the familial mutation is identified, a medical
abortion is an option.

Another option is pre-implantation genetic diagnosis,
medically-assisted reproduction with selection and implan-
tation of embryos that do not carry the familial mutation,
thus avoiding the distress of a medical abortion. Pre-
implantation genetic diagnosis requires in vitro fertilization
and might require multiple cycles before leading to
successful delivery of a baby. Pre-implantation genetic
diagnosis is not available in all countries and is not a covered
insurance benefit in all countries or by all insurers. These
methods are used in many other diseases but are contro-
versial in conditions in which penetrance is incomplete, such
as HPAH. Due to the psychological impact of abortion on
prospective parents, especially in the setting of an incom-
pletely penetrant genetic disease, many patients prefer pre-
implantation genetic diagnosis in selected HPAH families
after multidisciplinary discussion when it is financially
feasible and medically available. In France, pre-implantation
genetic diagnosis is currently offered to selected families
with highly-penetrant BMPR2 mutations causing HPAH
(57,58). Because pregnancy is a risk factor of PAH, pre-
implantation genetic diagnosis is currently proposed in
couples where the future father carries the causal mutation.

Genetic testing allows identification of pre-symptomatic
carriers of PAH-causing mutations who are at high risk of
developing PAH. However, because of incomplete pene-
trance of mutations in PAH-predisposing genes, it is
currently not possible to identify which carriers of a muta-
tion will develop PAH. There are currently no proven
effective interventions or medications available to prevent
disease in mutation carriers. Associated genetic or environ-
mental factors modifying penetrance of PAH in these
mutation carriers to improve risk stratification are still
unknown. Thus, genetic testing in relatives will effectively
identify mutation noncarriers who have no increased risk of
the heritable disease and potentially provide significant
relief; however, mutation carriers currently face many
uncertainties, because physicians cannot determine which
patients will develop the disease or when. Such patients are
currently offered yearly screening echocardiography with
Doppler as well as immediate evaluation for symptoms such
as exercise dyspnea. Because of the psychological impact of
the positive or negative genetic results in asymptomatic
relatives, pre-symptomatic genetic testing should be
provided in the setting of a multidisciplinary team with
availability of pulmonary hypertension specialists, genetic
counselors, geneticists, psychologists, and nurses.

In France, up to 200 relatives of mutation carriers have
volunteered for pre-symptomatic genetic testing. This led to
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the identification of dozens of asymptomatic BMPR2 muta-
tion carriers. An ongoing study is currently evaluating the
efficacy of pre-symptomatic screening and follow-up in this
cohort. In this study, all carriers have yearly complete evalua-
tion, including exercise testing, Doppler echocardiography,
and measurement of circulating biomarkers (and rest
and exercise right heart catheterization) (NCT01600898).
Long-term follow-up might allow investigators to identify
predictors of progression toPAH inpre-symptomaticBMPR2
mutation carriers. This active screening approach remains
investigational and should help to refine future guidelines.

In the United States, physicians, PAH patients, and their
family members have rarely embraced pre-symptomatic
genetic testing for several reasons. First, genetic testing is
relatively expensive. Second, the psychological impact of
either a positive test (anxiety and depression) or a negative test
(survivor guilt) is important for some individuals. These
effects might have unintended consequences for other family
members who do not wish to know their mutational state.
Third, in the United States, concerns about discrimination
remain, in spite of the passage of the Genetic Information
Non-Discrimination Act (GINA) (HR 493). Although
GINA protects against discrimination by insurers and em-
ployers, there are gaps in GINA protections (e.g., when
applying for life, disability, or long-term insurance). In
contrast, the French Network of Pulmonary Hypertension
has launched a genetic counseling clinic with more than 1,000
subjects volunteering for “free” genetic counseling in the last
10 years (M. Humbert, personal communication, June 2013).

In a German proof of concept approach (59) and
a subsequent larger study in the European Union, screening
of family members with echocardiography at rest and during
exercise and hypoxia revealed a significantly higher
frequency of an elevated tricuspid regurgitation velocity
response to exercise and to prolonged hypoxia than in
control subjects, especially in those relatives who shared
a BMPR2 mutation with the index patients (60). This
suggests that elevated estimated pulmonary artery pressure
response to exercise and hypoxia might be genetically
determined with a familial clustering. Further studies are
needed to analyze the clinical value of noninvasive screening
assessments in relatives of IPAH and HPAH patients and
to develop an algorithm for early diagnosis in this cohort.

Genomics of PAH

Besides the investigation of constitutional genetic variations
or mutations underlying PAH, molecular investigation of
lung tissue or specific cell types when possible or surrogate
blood cells can provide important information concerning
the mechanisms of the disease.
Somatic genetic changes in PAH lungs. Considerable
evidence has accumulated over the past decade to advance
the hypothesis that the pathogenesis of PAH is a neoplastic-
like process (61–63). Microdissection of plexiform lesions
from the lungs of idiopathic and anorexigen-induced PAH
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cases showed that endothelial cells have a monoclonal
pattern of X-inactivation (62,64). Some lesions also showed
microsatellite instability, a hallmark of hereditary non-
polyposis colon cancer, and mutations of the apoptosis
regulator BAX (65). Many of the abnormal properties
observed in pulmonary artery endothelial cells (PAECs) and
pulmonary artery smooth muscle cells (PASMCs) are
analogous to cancer, including increased proliferation,
decreased apoptosis, activation of hypoxia-inducible factor-
1-alpha, mitochondrial abnormalities, and a shift from
oxidative to glycolytic metabolism (66–72).

Use of SNP arrays or comparative genomic hybridization
array data to assess copy number variations can provide
important information in PAH. Analysis of hyper-
proliferative PAECs and PASMCs from patients with PAH
identified large-scale genomic alterations in the endothelial
cells, which were confirmed in patient lung tissue by fluo-
rescent in-situ hybridization (73). Abnormalities were
detected across heritable, idiopathic, and associated cases of
PAH, providing the first evidence for a second genetic hit in
patients with germline BMPR2 mutations and also sug-
gesting that somatic changes might represent a shared
feature across different types of the disease. However, there
is no evidence for direct loss of heterozygosity at the BMPR2
locus (74). In some cases, PAECs seem to be clonal even
before the acquisition of the cytogenetically abnormal sub-
clone (73). This suggests that another underlying genetic
mutation or other population bottleneck precedes the
chromosome rearrangement, a finding that fits well with
the hypothesis that endothelial apoptosis in the early stages
of PAH leads to subsequent selection of proliferative,
apoptosis-resistant endothelial cells (75).

The PASMC proliferation is also a critical component of
vascular remodeling in PAH, yet the incidence of chromo-
some abnormalities seems to be much lower than in PAECs.
PASMCs are also usually polyclonal (62). The reasons for
these differences are presently unclear.

One limitation of these studies is their reliance on explant
or autopsy lung tissue, which by definition represents end-
stage disease. However, it is not feasible to obtain tissue
by lung biopsy in the earlier stages of PAH. Another
important consideration is to demonstrate that these
abnormalities are not simply artifacts of in vitro cell culture.
Several lines of evidence argue against this, including
confirmation of 2 chromosome deletions in uncultured lung
tissue by fluorescent in-situ hybridization and the absence of
any detectable abnormalities in multiple control subjects or
cells from explant lungs of patients with cystic fibrosis or
chronic obstructive pulmonary disease (73).
mRNA expression studies. Early expression studies on
lung tissue were limited by small sample sizes. Alternative
strategies with surrogate tissue (peripheral blood) have sug-
gested the utility of transcriptional profiling (76). The effec-
tiveness of expanding cohort sizes and using well-defined
phenotypes for array-based classification was demons-
trated with blood and examining markers that differentiate

http://www.clinicaltrials.gov/ct2/show/NCT01600898?term=NCT01600898%26rank=1
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“scleroderma only” from “systemic sclerosis-associated PAH”

patients (77). There is a clear benefit to using large, well-
characterized cohorts when examining lung tissue gene
expression profiles. Several newer efforts have focused on
this approach. A larger sample of lung tissue array analysis
demonstrates similar pathway disruption between pulmo-
nary hypertension and pulmonary fibrosis (78). Perhaps the
largest study to date using lung tissue microarray profiling
demonstrated that, in patients with pulmonary fibrosis, the
presence of pulmonary hypertension is characterized by a
specific gene expression profile in both a training and testing
algorithm (79).

Cell-based expression studies have been useful in char-
acterizing selected pathways as well as determining
differences in selected cell populations. For systemic
sclerosis-associated PAH, pulmonary fibroblasts and lung
tissue from patients with PAH and those from systemic
sclerosis patients without PAH demonstrate characteristic
gene expression signatures (80). Several studies have used
global gene expression signatures to determine a more robust
pathway analysis, including the effects of BMPR2 deficiency
(81). The novel role of interleukin (IL)-13 in PAH
pathobiology has been investigated, on the basis of array-
generated data (82) and mouse model studies (83). Poten-
tial new therapeutic targets, such as apelin and peroxisome
proliferator-activated receptor-gamma, have been extensively
studied with array-based platforms (84,85).

One significant challenge to all genomic approaches is
leveraging data into novel systems-based analysis ap-
proaches. Putting all of the relevant information into
a systems model of pulmonary vascular disease might provide
unique insights (86).
Role of miRNAs in PAH. Microribonucleic acids (miR-
NAs) are small non-coding sequences of RNA that have the
capacity to regulate many genes, pathways, and complex
biological networks within cells, acting either alone or in
concert with one another (87). In diseases such as cancer and
cardiac disease, the role of miRNAs in disease pathogenesis
has been well-documented (88). The application of miRNA
technologies and their therapeutic potential in cardiovascular
diseases is most elegantly summarized by Small and Olson
(89). The most extensive global investigation, leading to
mechanistic studies and potential therapeutic implications
for miRNAs in PAH centers, was performed on miR-204
(90). In this study, the investigators provided a comprehen-
sive model linking abnormal miRNA expression to already
known pathophysiologic processes in PAH, including
nuclear factor of activated T cells activation, BMPR-II
down-regulation, IL-6 production, the Rho pathway,
PASMC proliferation, and resistance to apoptosis. This
study not only demonstrates the importance of miRNAs in
PAH but also suggests that re-establishing normal miR-204
levels might represent a novel therapeutic approach for
human PAH (90). Brock et al. (91) showed that BMPR2 is
directly targeted by miR-17-5p and miR-20a and that IL-6
induces miR-17/92 through STAT3 induction. A highly
ded From: http://content.onlinejacc.org/ on 01/24/2014
conserved and functional STAT3-binding site in the
promoter region of miR17/92 was found, and persistent
activation of STAT3 leads to repressed protein expression of
BMPR2 (91).

The BMP/TGF-b signaling itself regulates multiple
different miRNAs through an interaction between Smads
and the primary miRNA transcript, which leads to up-
regulation of mature miRNAs in response to BMP ligand
(92). This response was lost in lung vascular cells from
patients with BMPR2 or SMAD9 mutations, suggesting that
abnormal miRNA regulation plays an important role in
HPAH (4). A systems biology approach supports a central
role for miR-21, 1 of the miRNAs regulated by this BMP-
mediated pathway (93). Abnormalities of miRNA process-
ing in HPAH cells can be corrected by increasing the amount
of BMPR-II protein at the cell surface or by promoting
readthrough of nonsense mutations in BMPR2 or SMAD9
(94,95). These approaches have the advantage of correcting
the levels of multiple different miRNAs as well as other
aspects of BMP signaling and, therefore, could represent
promising therapeutic approaches in HPAH. Other studies
in human tissues and animal models of pulmonary hyper-
tension have implicated additional miRNAs, including the
miR-17-92 cluster and miR-145 (91,96,97).

There are several methods to assess global miRNA
expression, and both array-based and polymerase chain
reaction-based methods represent biased approaches, relying
on “known” miRNA sequences. Because miRNA processing
can result in changes of miRNA sequences, the most
unbiased approach and one that is increasingly adopted is
the use of massively parallel sequencing strategies targeting
small RNA species.
Epigenetic modifications and pulmonary hypertension.
Epigenetic traits are stably heritable phenotypes resulting
from changes in a chromosome without alterations in
deoxyribonucleic acid sequence (98). Epigenetic changes are
thought to lead to cellular reprogramming, the process by
which a differentiated cell type can be induced to adopt an
alternate cell fate. This idea seems to be consistent with
observations in pulmonary hypertension, in which PAECs,
PASMCs, and adventitial fibroblasts have all been demon-
strated to acquire significantly altered characteristics, in-
cluding stable increases in proliferation, resistance to
apoptosis, metabolic switching, and pro-inflammatory gene
expression. Recent studies have documented that down-
regulation of superoxide dismutase-2 in the fawn-hooded rat
model of pulmonary hypertension results from tissue-
specific hypermethylation of just 2 CpG positions in the
SOD2 promoter and an intronic enhancer (99). Another
candidate for epigenetic study is BMPR2, with significantly
down-regulated expression in many PAH lungs, even in the
absence of a germline mutation (78,100).

Histone deacetylases (HDACs) catalyze removal of acetyl
groups from lysine residues in a variety of proteins. The
HDACs have mainly been studied in the context of
chromatin, where they regulate gene transcription by
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deacetylating nucleosomal histones. The 18 mammalian
HDACs are grouped into 4 classes (101). Dysregulation of
HDACs is associated with a variety of pathophysiological
processes, including cancer and inflammatory signaling in
rheumatoid arthritis.

Expression of class I HDACs, particularly HDAC1, is
dramatically elevated in pulmonary arteries of humans with
pulmonary hypertension and in lungs and vessels from
pulmonary hypertensive models. On the basis of these
findings, recent studies have begun to address the role of
class I HDACs in the pathogenesis of pulmonary hyper-
tension. In a 3-week rat model of hypobaric hypoxia, the
class I HDAC-selective inhibitor, MGCD0103, reduced
pulmonary artery pressure through a mechanism involving
suppression of PASMC proliferation (102). The anti-
proliferative effect of MGCD0103 was due, in part, to up-
regulation of the FoxO3a transcription factor and induction
of a downstream target gene encoding the p27 cyclin-
dependent kinase inhibitor. In addition it has become
increasingly clear that HDAC inhibitors can be used to
reduce cardiac hypertrophy and fibrosis (103).

Conclusions

Pathophysiological changes occurring during the develop-
ment of PAH are extremely complex and probably involve
many genetic and epigenetic mechanisms that lead to
changes in gene expression and proliferative and metabolic
changes in cells. Until now, approaches have been frag-
mentary and did not allow a holistic view of disease
development. Recent high-throughput techniques, in-
cluding genomics, metabolomics, and proteomics, can be
performed simultaneously for a given patient and in
different cells and biological fluids and can be repeated
longitudinally as disease progresses. Such an approach was
described for 1 subject and generated useful information
(104). Such an approach would be invaluable for under-
standing the disease evolution, particularly in BMPR2
mutation carriers.

We can also expect that next-generation sequencing in
selected families will identify new important genes for
explaining heritable forms of PAH. Although the identifi-
cation of novel PAH genes might not account for a large
percentage of patients, recent findings would suggest that
these data have potential to elucidate pathogenesis and
provide novel targets for therapy. Equally, the analysis of
common variation in large, well-characterized PAH groups
has been demonstrated to yield important insights, and the
replication and extension of these genome-wide association
studies should serve to further define the PAH genetic
landscape.
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